•

EXHIBIT 18

Inhalation Drug Products in LDPE Containers: A Quality (CMC) Perspective

Vibhakar Shah, Ph.D.

Pulmonary and Allergy Drug Products Division of New Drug Chemistry II Office of New Drug Chemistry, OPS, CDER, FDA

Drug Safety and Risk Management Advisory Committee May 05, 2004

Outline

- > Inhalation Drug Products
- > Container-Closure System Overview
- > FDA Analytical Survey and Other **Data**
- > Quality Concerns
- > Potential Approaches
- > Recommendations for Packaging
- > Summary

Inhalation Drug Products

- >Inhalation Solution
- > Inhalation Suspension
- ➤ Inhalation Spray
 - ◆ Solution
 - ◆ Suspension
- ➤ Inhalation Aerosol (Metered Dose Inhaler)
 - Solution
 - ◆ Suspension
- ➤ Inhalation Powder (Drug Powder Inhaler)

DSARMAC, May 05, 2004

Drug Product Examples

- ➤ Albuterol SO₄ Inhalation Solution
- > Levalbuterol HCl Inhalation Solution
- > Ipratropium Br Inhalation Solution
- ➤ Albuterol SO₄ and Ipratropium Br Inhalation Solution
- ➤ Metaproterenol SO₄ Inhalation Solution
- > Cromolyn Na Inhalation Solution
- > Budesonide Inhalation Suspension
- > Tobramycin Inhalation Solution

Current Container-Closure System

Inhalation Solution and Suspensions:

- > Unit-Dose containers/Vials (UDV)
 - ◆ LDPE vials
 - ◆ Blow-Fill-Seal/Form-Fill-Seal Process
- > Vial label
 - ◆ Emboss, Deboss
 - ◆ Self-adhesive Paper label
- > Foil overwrap pouch (1, 4, 5, 12 vials/pouch)
 - ◆ Pre-printed
 - ◆ Self-adhesive Paper label

DSaRMAC, May 05, 2004

Container-Closure Components

LDPE vial

LDPE Characteristics

>Low density polyethylene (LDPE) is a polyethylene homo-polymer resin:

$$-[-CH_2-CH_2-]_n-$$

- > Resin Components:
 - Reactant monomer, Chain transfer agent, Chain initiator, Antioxidant, Stabilizers, Slip Additive, Superfloss Antiblock additive
- > Different grades for different applications
- ➤ Many sources: Manufacturers, suppliers

DSARMAC, May 05, 2004

LDPE Vial Properties

- > Flexible and malleable
- > Stress crack, impact and tear resistant
- > Considered chemically inert at room temperature
- > May be usable up to 80°C for extended periods
- > Sterilizable
- > Amenable to high speed production lines
- > Aesthetically, clear to translucent to opaque
- > Permeable to volatile chemicals and gases

Container-Closure Components

Paper label

DSaRMAC, May 05, 2004

Typical Paper label Components

- > Calcium Carbonate
- > Kaolin Clay
- > Ethylated Corn Starch
- > Cationic Potato Starch
- > Sodium Bicarbonate
- > AKD
- > Colloidal Silica
- > Liquid Alum
- ➤ Latex Calcium
- > Stearate

- > Viscosity Modifier
- > Polyvinyl Alcohol
- > Ammonium Zirconium Carbonate
- > Carboxymethylcellulose
- > Dispersant
- > Microbiocide
- > Fluorescent Dye
- > Pigment Dye

DSaRMAC, May 05, 2004

Typical Adhesive Components

- >Aromatic C5 hydrocarbon resin
- > Polymeric hindered phenol (Anti-oxidant)
- > Diasteary I pentaerythrotol diphosphate (Anti-oxidant)
- > Styrene-isoprene-styrene block polymer,
- ➤ Naphthenic Oil
- ➤ Liquid C5 hydrocarbon resin

DSaRMAC, May 05, 2004

11

Typical Over-lacquer Components

- > Joncryl 60, 89, 624
- > Wax dispersions (e.g., Liquitron 345)
- > Defomers (e.g., Tego Foamex 1488)
- > Non silicone Defomers (e.g., Nopco NDW)
- > Grease resistant coating Agents (e.g., Scotchban FC-807)
- > PTFE Dispersions (e.g., Fluotron 300)

- ➤ Slip Additives (e.g., Dow 51 Additive
- > Lucidene 614
- ➤ Morcryl 360
- > Surfactants (e.g., Aerosol OT-75)
- Syloid silicas
- > Methyl-n-2-pyrrolidone
- > Aqua Ammonia
- Normal propanol
- > Water

DSaRMAC, May 05, 2004

Typical Ink Components

- ➤ Acrylic resin
- > Styrene acrylic polymers
- > Surfactant
- > Cellulosic defoamer
- > Maleic resin chip
- ➤ Pigment Dyes:
 - ◆ Carbazole violet 23
 - ◆ Phthalocyanine blue
 - ◆ Phthalocyanine green 7

- ➤ Pigment Dyes:
 - ◆ Red 238
 - ◆ Violet 23
 - ◆ Black 7
 - ♦ Yellow 74
 - ◆ Green 7
 - ◆ Blue 15
 - ◆ Red 57
 - ◆ Violet 3

DSaRMAC, May 05, 2004

Container-Closure Components

Foil-laminate

Typical Foil-laminate Components

A B C D E F G H

H G F ED CB A

A = Exterior layer Polyester/PP/PE (0.00048 inch)

B = Inks

C = Adhesive1

Aluminum

Foil (0.00035 inch) E = Adhesive2

F = Nylon/Polyester/ PP/PE(0.001 inch)

G = Adhesive3

H = Interior layer Polyester/PP/PE (0.003 inch)

DSaRMAC, May 05, 2004

LDPE Vial Permeability: Implications

- > Contamination of drug product with ingress of volatile chemicals from the environment that may be irritants or toxic to the respiratory tract, and may sensitize individuals.
- > Degradation of the drug products in LDPE vials by reactive gases and light.
- > Water evaporation through LDPE vials, altering the concentration of drug product in LDPE vials.
- > Potential acceleration of drug product degradation (impurities) due to change in drug concentration.

DSaRMAC, May 05, 2004

FDA Analytical Survey and **Other Supportive Data**

DSaRMAC, May 05, 2004

FDA Analytical Survey

- > Initiated by OGD & DPADP/OND in coordination with OC/ORA Field Offices and Pacific Regional Laboratory.
- > 7 ANDAs and 1 NDA for Inhalation solutions covering five different drug substances.
 - ◆ 38 samples representing 37 Lots of various drug products in LDPE vials without a protective overwrap foil-pouch.
 - Samples screened for potential volatile chemicals such as vanillin, 2-phenoxyethanol, and 1-phenoxy-2propanol by GC-MS (sensitivity ~ 0.5 ppm) and HPLC methods.

FDA Analytical Survey: Results

- > 29 out of 38 samples tested positive for chemical contamination originating from packaging.
- > Detected 5 known chemical contaminants originating from packaging.
 - ◆ Benzophenone (2 lots)
 - ◆ Polyethylene glycols (n = 4 -8), (3 lots)
 - ◆ 2-(2-Butoxyethoxy)ethanol (DEGBE), (24 lots)
 - ◆ 2-(2-Ethoxyethoxy)ethanol acetate (DEGEEA), (3 lots)
 - ◆ 2-Hydroxy-2-methylpropiophenone (2-HMPP), (5 lots)

DSaRMAC, May 05, 2004

FDA Analytical Survey: Conclusion

- > Potential for these chemicals to cause bronchospasm at levels detected is unknown, especially, in patients with respiratory diseases.
- Concentration of these chemicals might be greater at the end of expiry than what was detected.
- ➤ Ingress/Leaching of chemical contaminants into drug product formulations from packaging components demonstrates that **permeation** through LDPE is a real phenomenon.
- > Additional chemicals may be present, but may not get detected by the analytical procedures used.
- > Future changes in the materials used in labeling and packaging may result in contamination with different chemicals.

FD/ DSaRMAC, May 05, 2004

Typical Sources of Product Contamination

- > Formulation components (Degradation)
 - Drug substance, excipients, formulation vehicle
- Resin components (Leaching)
 - Monomer, dimer, antioxidants, plasticizers, catalysts etc.,
- Paper label components (Leaching)
 - Paper, adhesive, varnish/over lacquer, inks, residual volatile solvents
- > Foil overwrap components (Leaching)
 - · Adhesive, residual volatile solvents
- > Cartons (Leaching)
 - Adhesive, residual volatile solvents
- Environment (Leaching)
 - Reactive gases, volatile pollutants

DSaRMAC, May 05, 2004

Extractable/Leachable: Examples

- > Resin components
 - ◆ Irganox 129, 2, 2, 6-trimethyloctane
- > Paper label components
 - ◆ Benzoic acid, ethyl phthalate, benzophenone, Danocur 1173, cyclic phthalates
- > Foil overwrap components (Leaching)
 - ◆ Methacrylic acid, 2-phenoxyethanol
 - ◆ Acetone, 2-butanone, ethylacetate, propylacetate, heptane, toluene
- > Cartons (Leaching)
 - ◆ Methacrylic acid, 1-phenoxy-2-propanol

Quality Concerns

- > Proprietary components and composition of packaging materials.
- > Change in the components and composition of these materials without the knowledge of applicant and the Agency.
- > No one analytical procedure to detect known/unknown chemical contaminants.
- > Incomplete toxicological data for many of the identified chemical contaminants.
- > Variable environmental conditions may introduce new contaminants.

DSaRMAC, May 05, 2004

23

Potential Approaches

Agency's Quality Control Approach

- > Characterize/Identify all possible extractables and establish a profile for each packaging component (e.g., resin, vial, paper label, foil-laminate overwrap).
- > Establish a correlation between *extractable* and its leachable potential.
- > Set meaningful acceptance criterion for a given extractable in corresponding incoming packaging components, based on its qualification level and actual observed data.
- > Set meaningful acceptance criterion for a given leachable based on actual observed data in the drug product.

DSaRMAC, May 05, 2004

25

Extractable & Extractable Profile

- > Extractable is a chemical compound (volatile, non-volatile) that gets extracted from à packaging component in a suitable solvent by utilizing optimum extraction conditions (time and temperature).
- Extractable profile for a given packaging component, typically can be a chromatogram (GC, HPLC, GC-MS, LC-MS) representing all possible extractables.
- Extractable profile is established for all packaging components (resin, vial, foil-laminate) for their consistent quality assurance.

Leachable

- > Leachable is any chemical compound (volatile, non-volatile) that leaches into the drug product formulation either from a packaging component or local environment on storage (time and temperature) through expiry of the drug product. An extractable can be a leachable.
- > To ensure batch-to-batch consistency of the drug product, appropriate specification (test method, acceptance criteria) for a leachable is established based on its qualification (toxicity) and observed levels in the drug product on storage.

DSaRMAC, May 05, 2004

Recommendations

Recommendations

- > Adequate knowledge of composition and physico-chemical properties of packaging components for appropriate selection.
 - Resin components, foil-laminate, paper label, inks (aqueous vs. non-aqueous base), etc.
- > Discourage paper label directly on the LDPE vial.
- > Encourage alternative approaches, including embossing/debossing in lieu of the paper label on the LDPE Vial.
 - Extended bottom flanges to UDV to carry essential vial labeling information and product identity.

DSaRMAC, May 05, 2004

Recommendations

- > Use of protective overwrap foil-pouch for the LDPE unit-dose vial (UDV)
 - ◆ Can minimize ingress and leaching of chemical contaminants from the local environment.
- > Self-adhesive paper label on a foil-pouch or preprinted foil-pouch and different color schemes to differentiate multiple strengths of the drug product.
 - Prevent ingress/leaching of chemical contaminants from paper labels and also improve the legibility issues.

Recommendations

- Limit the number of unit-dose-vials per pouch, ideally to one LDPE vial per foilpouch.
 - ◆ Minimize the risk of medication error by patients and health care professionals
 - Prevent unnecessary exposure to local environment (When compared to packaging of multi UDVs/Foil-pouch)

DSaRMAC, May 05, 2004

Summary

- > Volatile chemicals present in the packaging components and local environment have great potential to permeate through LDPE vials into drug product formulation on storage (time and temperature).
- > Agency's Analytical Survey and other supportive data have confirmed ingress/leaching of such volatile chemicals into the drug product formulations.

DSaRMAC, May 05, 2004

Summary

- > Ingress/leaching of such chemicals into drug product formulation poses a safety concern for patients with respiratory illness (Asthma, COPD).
- > Embossing/debossing of LDPE vial in lieu of paper label is recognized to have legibility issue.
- > Paper labels, although perceived to address legibility issue, overall may not be the optimum solution because of the safety concerns associated with potential leaching/ingress of paper label components in the drug product through LDPE vial.

DSaRMAC, May 05, 2004

Summary

- > Agency's current recommendations as stated in the draft guidance may serve as a first step in right direction to address the issues that are being discussed today.
- > Agency is seeking other <u>viable</u> approaches to address these issues to promote safe product use without compromising the integrity of the drug product.

Inhalation Drug Products in LDPE Containers: A Quality Perspective

Thanks.

Blow-Fill-Seal (BFS) a.k.a Form-Fill-Seal (FFS) **Process**

FDA DSaRMAC, May 05, 2004

Blow-Fill-Seal / Form-Fill-Seal Processes

Extrusion

- > Thermoplastic resin beads are pneumatically fed into the B/F/S machine. The beads enter an extruder where they are melted by heat generated by electric band heaters and physical compression.
- > The molten thermoplastic is then continuously extruded through an orifice in a tubular shape [parison,
- > The machine simultaneously extrudes six parisons per machine cycle and forms/fills four vials per parison. Filtered ballooning air continuously passes through the formed parison to maintain its shape.

DSaRMAC, May 05, 2004

Blow-Fill-Seal / Form-Fill-Seal Processes

Blow & Fill

- > When the tube (parison) reaches the proper length, the main mold (B) closes and the parison is cut off at (C).
- > The bottom of the parison is pinched closed and the top is held open by a set of holding jaws (D).
- > Vacuum ports in the mold cavity walls activate to form the container. The mold then moves to a position under the filling nozzle.
- > The filling nozzle (E) lowers Into the parison unit it forms a seal with the neck of the mold.
- > A metered amount of product is then transferred Into the container.

DSaRMAC, May 05, 2004

Blow-Fill-Seal / Form-Fill-Seal Processes

Seal

- > When the container is filled, the filling nozzle retracts to its original position.
- > At this point in the cycle, the length of parison between the top of the mold and the holding jaws is still semimolten.
- > A sealing mold (F) doses to form the top and hermetically seal the container.
- > Once the container is sealed, the sealing mold, main mold, and holding jaws open. A trim die removes residual plastic (G) and a formed, filled, and sealed container is conveyed out of the machine.

DSaRMAC, May 05, 2004

39

Drug Product Examples

- ➤ Albuterol SO₄ Inhalation Solution (AccuNeb®, Proventil®, Ventolin®)
- Levalbuterol HCl Inhalation Solution (Xopenex®)
- > Ipratropium Br Inhalation Solution (Atrovent®)
- ➤ Albuterol SO₄/Ipratropium Br Inhalation Solution (DuoNeb®)
- ➤ Metaproterenol SO₄ Inhalation Solution (Alupent®)
- Cromolyn Na Inhalation Solution (Intal®)
- > Budesonide Inhalation Suspension (Pulmicort®)
- > Tobramycin Inhalation Solution (Tobi®)

DSARMAC, May 05, 2004